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OF CRDINARY DIFFERENTIAL EQUATIONS

ABSTRACT

The optimum mesh at point x is defined here as the interval, h(x),
which minimizes the time of integration of an ordinary differentisl
equation while maintaining a preseribed bound of the error. An attack
upon the problem of constructing such a mesh is carried out here with
the ald of the Caleculus of Variations, The Buler equations are derived

and discussed, and the results are extended to a system of differential
equations.
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INTRODICTICN

In the numerical inbegration of ordinary differential eguations by
a step~-by-step method it is sometimes advantageous to change the step,
h, as the integration rroceeds, This suggests the following problem:

"Given the equation

Vo= Plx,y), 7(0) = ¥pr 0<x<X (1)

and 2 mmeypical mebhod whose local truncation error is of order H°, k22,
required the function h(x), such that 1) the accumulated error, &y,

doed not exceed a preseribed bound, B, and 2) the time of integration
is minimized®, \

Provideg Oy is sufficlently small, it will satisfy the variational
equation

Loyt @

where 1 is the local error per step. If € is an upper bound of the
rate of the local error; i.e.,

|n Mee, (3)
then &y has an upper bound, E(x), satisfying the differential equation]')

E' - £8 -¢=0, E(0)=0, | (L)

whose solution is

- <
I(x) = I exp J‘ £ (o,3(c)) dae(&) d&.(5)
‘ &

o)

A boungd € 1 of the error rate can be estimated as
s _
R/h + ‘Pk + h Wk,,_l Tuersgy (6)

Where R 15 a bound of the local rounding error and wk(x),whl(x) are
funetions of the zeroth order in h. If

k
R £ (k_l)y)kk*'l/ ¥ kel n

it is possible to .choose h such that

h R/(k-lJ wk 1/1{ <h << k/ Z‘Vk.._ln (8)

m
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Then the second term in (6} dominates the third, andfllﬁ-kh I}Jks so
o=

that 2 new bound can be conveniently chosen as € = ki the subscript
k of W having been dropped. If the rounding error ie neg]igible, a more
practical bound would be

€ =xly , (9)

which we shall adopt here, fm the other hand, if the rounding error is
not negligible, the results to be derived will remain valid provided ¥
is replaced by k ) wherever it 0CCUI'S,

The simple problem of minimizing E(xz), regardless of the time
consumed, is seen from (5) to be equivalent to that of minimizing
1 =R/ + hk=1 Y. Two properties of the solution, furmshed by the

function h = hm(_x)_g may be noted in passing: 1) € (h } = k \P, 2) R:
hﬁxpz (k-1): 1; i.e. the local error bound is partltn.oned botween the

rounding and the truncation in the ratio (k - 1): 1, The latter result )
should be contrasted with the popular notion that th:l.s ratio should not
exceed umtyu

The functiony(x) ig listed below for some of the more commonly
used methods of step-by-step integration.

Table 1
|Me’c.hod k ‘ x Remarks
Eu.la[‘ & % yi i
Méda‘.fied Eulerj) 3 1 yrir o 1 £yt one iteration
17 it
" " 3 ]% gr two iterations
Kubta ' L
Eunge-Kut‘bah) 5 _c(x)y(5) |

The modified Euler method with one iteration, called by some the Heun
method, can be ecited as an exception to the general rule that yJ is of the
i‘orm

wu)=dm§”(ﬂ, (10)

whera y(k) is the derivative of order k and e(x) depends on f(x,y) and

the method used,




If new variables H(x), S(x) are now defined as

nx ‘ ~ %
H(x) =|exp ('J £, (&)E )Y ) (o) ]| © (11)
) |
x ) s
S(x) = exp (- j" (&) d4&) E(x), (12)
Q
(L) can be rewritten .
st=p(o)E<"t B = 0, 5(0) = 0, (13)

The time t; of integration for a given method is proportional to the
rumber of 1ntegra‘bion steps, Therefore,
X

) = [ adme, Y
o}
- ¢ -n =0 (15)

the three wiknown functions h, 5, and t are thus comnected by two non-
holonamic constraints (13) and (15). The system therefore has one
degree of freedom, which can be realized by an arbitrary choice of h(x),

VART ATTONAL APPROACH

We identify our problem with the Froblem of Bolza:5 ) in the Calculus
of Variatiens: "Required the function h(x) in the prescribed range
(%) = 05 x5 = ¥) 4 which minimizes the function g = t(x,) and satisfies

the differantial constrai\rrbs
=V (0 (x) -8 = 0, |
. (16)
dZ = h-l AR D’
subject to the end-conditions

s(0) = t(0) = 0, S(X) = s* -E*exp(wj £ (g)de,) g (17)

The Lagrangian,



must -satisfy the Euler egquations
ax Fz‘.! = Fz, 3 1=1, 2, 3, (19)
1 1 : :
with _
z) =hy 2y =5, 25 = t. : ' (20)
Then (19) becomes

A (k1) @ (0)h 2K -12h'2 = 0,

A\, = const., P S (21)
12 = const.,
leading immediately to
h = (o)t | (22)
1
) - — = COI‘lSta
h(0) = | ay/(k-1) (o)}l ‘k, o

The parameter h(0) is determined from the end-conditions as

X -1
CORNEVATOY NS aé‘m , (23)
and t(X) from (22,1), (16.2) as
) X : )
= ® (@) ag LOT (21)
0 o

It can be shown that t 2 T, where © corresponds to a constant
interval,f. For we have from (16)

. |
Be sy [ & <a>agm, (@)

T = I/h



Hence, with the and of the Hdlder inequa]it:sré) for k>1, there follaws
k 1 ,
b X =!H/I?E l‘ T ¢,

- ; (26)
where H and ;11? are the mean values of H and I{lf:, respectively, on the
interval (0,%), This result, of course, would be expected if our
" solution furnishes the absolute minimmm of t.

From (16) and (22,1) can be deduced

ds/dt = const. (27)

_ < ..
E(x) = t exp j‘ fy (& )d£& consta,
0
which admits of the following interpretation: “AIl points of an optimum
mesh make equal contributions to the final truncation error®.
THE EFFECT OF DISCONTINUITIES

Since the use of a continuous h(x) is physically impossible, it may
be replaced by some convenlert step-function, such as _

h*(x) =h, (0)2m: m=0, %1, + 25400 : (28)
with the additional constraint
¢3 =mi = O’ . (29)
the augmented Lagrangian,
=g (LP(O)hk-lHk-S') + xz.(h'l- tr) + A (30}
- 2
must satisfy the Corner Conditionﬂ s
AF,, =0, OF-32! F,)=0, : (31)
i i
where A denotes a "jump": 8.8
AF =T, =F_, (32)
From (31) and (30) is obtained
A)‘cl =A).2 EAXB =0
A0, YORTE +ap™) =0, (33)



If £ is of class kal, then

Afy =0, A¥ =0,

(3h)
and we deduce,with the aid of (28),
A 2EL)  A2™ o const; HE (3)
Finally, if m(0) = 0 and\a.m\= 1, (35) ylelds 2™ = 1 at corners, and
n(x) = |:1og: H(x)/log 2:| (36)
holding everywhere, the symbol[]demoting the integral part of a number
h(0) and t{X) can now be calculated from (17) as ]Z}'I
_ X _ -
k-1m( &) _k(&)4
0
X (37)
t, = I 27(S g M, (0)e
0

THE EFFECT OF INEQUALITTES

Since Ry, Y, , Wy, occurring in (8) are generally difficult to

calculate, some ather convenient bounds may be imposed on h in the general.
form

a<h (X) ébe (38)

Turthermore, instead of prescribing the terminal error bound, E(X), there
may be imposed a bound on the i‘unctlon E(x):

E(x) < &F, (39)
"~ Inasmuch as h(x) is discontimuous, the usual Tangency Condition does not
hold, so that the inequalities (38), (39) must be enforced directly.

It is to be noted that putting an upper bound on h prevents the break-
dm-m(of the solution wheny (x) = 0, leading to H(k) = 0 in (21) and h(x) =°°
in 22).

THE SUFFICIENCY COMNDITION

For a strong relative minimm the Sufficiency Cond:.t:.onsa) are I, IT'

TII', IV, deseribed below. The Mu‘Lt:.pher Rule, I, is satisfied by the
solution of the Tuler equation provided q and A\, are not both zero and

the Transversality Condition is satisfied. The latter, in our problem
reduces to '

10



By + Fyy =0, ' (L0)

12(:{2) =1, (J-ll)

The Wel.erstrauss Condition, II}, expressed in terms of the E-
. function, is : _

B(zt,2) = F(x,2,2¢) - F (xy3,2¢) = (2%-z! )Fm(x,z‘,ﬂ )=0, (h2)

where the slope functions z' are functions of the field coordinates

%,2 in the neighborhood of the solution and 2t # zt, If the derivatives
of certain variables z are lacking in F; then such z_must be classed

2 slope function and " (L42) modified accordingly., In our problem, there-
' fore, the slope functions are hy St, t', and (42) becomes, in view of
(30), (22)

E = % ¥ (O)E" s+ a,en7t

"k - |
where §h denotes a strong variation and
8 =6&h/h. : (Lly)

We observe that h>0, f>-1, k=2, and

(L+p)f -1 -xpr0 if -1<B 0, kD0 (45)

Thus (42) is equivalent to the requirement
| A,(x) >0, - (46)
which is obviously sé._tisfied, since
7"2‘(") =1 . (L47)

in virtue of (l1) and (21).

The Clebsh Condition, ITT%, is

Foy 062" 162130 (48)

AR A J
for all &zt i satisfylng the differentiated equations of constraint, In

11



our problem h(x) is the only slope function contributing to the qua.dratlc
form, so that (4i8) becomes

121:11 3 nP> o,, (k9)
which is automatieally satisfied; since
Ay =1, 22, h>0,

The pos:.tlve-deflmteness of the second variationg which is required
by Condition IV', in our problem reduces to

g = f Akh™> 6h 2ax > 0, ' - (50)
0

since X and X, are fixed, while g and the end-functions are linear in

their arguments. Since all the conditions are satisfied, the unique
solution (22) furnishes an absdlute minimm of te

AN APPROXIMATE SOLUTION

Iff , y(k), c(x) are replaced by some constant bounds defined by

- ¥y
means of
.| \y“(::)\ L |ewlee, (51)
then (10) becomes
Y (x) = = ¥ (0) (52)
Tn terms of the dimensionless quantities '
xt =Lx, h' =Ih, (53)
(11), (12) re_ti!ice.'bo
H=s7% 5=5(x)e® | (54)

on dropping the primes, while (22-25) become, respectively

h = h(0)e x/k _
. 1
© . X kL
mo) - e k(1-e‘m€) ) ’

12



B « gy (@ - s | (55)

- - E-i
'H _ I.,’?-K;- e-m.

[ ’
£(X) = X/h ,

for the discontinuous solution (28), (36), (37) become, respectively,

el o
h (x) = b (0,2

n(x) = [x/'k log 2], 1
L =)
e [
* Me 2(1-27%) (1-e~2/%) | , (56)
o alaiaa

3
A comparisen of the discontinuous and the continuous solubions yields

n (x): h(x) = 2% /¥ 2(x), (57)

-1
t,t b = £ (k) log b,

where £(k), defined by
1

x, | T .
fk)= | k/2(0-27%) | {58)

is a weak function of k. It has the properties _
£(0) = log k, £(1) = /2, £f(w) =1, f£14£0 (59)

and is tabulated below.

Table 2
x _|.s 1 2 3 b 5 6
£(k) 1.39 1.36 1.33 1.31 1.29 1.27 1.25
£t 1.00 1,02 1,05 1,06 1.08 1,09 .11
In the range 2< k<
14 f(k) < 4/3, (60)

13



while Eme-}c/k is a periodic piecewise monotonic function oscillating
between the values 1/2 and 1 with the period x = k log 2. Consequently,
h, : h oscillates in the range

1/2 £ f(k)/2 £ h,: h<€ (k)< L/3, (61)

so that the contirnmous and the discontinuous slutions are interlaced,

If X is approximated by an integral multiple of the period k leg 2,
we may pub :

X =Nk log 2 | (62)
and deduce from (55), (56) -
. 1
=T
. o3 202 2(1-27%) (1-27Ty |

* R

(63)
= @g(N,k).

The following special values and an asymptotic expansion of @{N,k) are
to be noted: -

#(lk) =1, ¢@ k) =0,
.

g = 2 | 22™) | %7 i N0 (64)

Consequently, as N ranges from 1 to oo the "relative gain", 1 - @, of
the optimum mesh, h (%} in comparison with the constant mesh, B,

ranges from 0 to 1. It should be noted, however, that the use of

constant bounds in (51) may lead to a solution h(x) which 1s fantastically
smaller than the one based on the local bound €(x), varying from point to
point, For this reason the results of this section must be used with
cautiona .

ON THE CHOICE OF METHOD OF INTEGRATTON

If we do not restrict ourselves to a particular method, the preceding
results enable us to choose the optimum k. By making the reasonable
assumption that the time of integration.per step is proportional to the
order of accuracy, k-l, we can write t as an explicit function of k, in the
form

X X 1 |
M k=T
b= (1) | B (EXE]  HB(EXEY (05 (68)
0 -0

where 0, is a knowm function of x, and proéeed to mimimize t with respect

1k



to ko For example, if Hk(x), \p’k(O) should be constants independent of
k, the optimm k =k _isg

k, =[1+ log 8] s
A% Y, (O)mX/S" | (66)°

As one would naturally expect, k, increases with the range X and with
the precision required,

In iterative procedures the mmber, v (x), of cycles per step can
also be optimized, This can be achieved by inbroducing v as a factar
of t and regarding €(h,v) as a known function of h, v; as well as X,
Then h(x) and v(x) are determined from the Euler equations,

h€h+v€v=0 s
X

log (h2‘ £h/v) =‘j\

fy( &) d&+ const, (67)
]

& SYSTEM OF DIFFERENTTAL EQUATTIONS

The construction of optimum mesh can be extended to a system

7.®) = £ (xy3) 5 7,(0) = 3, | (68)
i’j = 13 Bnn-l:
The Lagranglan can now be written
F=R(€+JE - B1) + % (h1-t1), (69)
where J is the Jacobian matrix
Jij = afi/an’ ‘ (70)
E and € are column matrices satisfying the relations
5y4 < Ei R
= R | 71
€=V, (1)

and (x) is a row of Lagrange multipliers, Generally, in this section a
bar placed above a letter will denote matrix transpositien. Let the
end-conditions be

E(0) = 0, t(oj=o,§= |E(X)| ~ B¢ =0 | (72)

15



The EU_._ler equations yield
Wo==u J,
h=h (0) 5™ (73)

ne | /o) y (o) | 1,
The solution of (73.1) is

B(x) = §@(0) 2 (%), : (7h)
where Z is the matrix solution of .
' 2" = - % J, 2(0) =1, , , (75)

T being the mlt matrix, Since J and Z became imown functions of x as
soon -as y{x) is known, it remains to-determine the n independent
constants p.i(O), h(0), satisfying the constraint '

: 1/2 '
’ u(o)l = |2in (o)| =1, (76)
The latter condition may be imposed without any loss of genmerality, since

(74) is 2 linear homogeneous equation. p(0) can be found with the aid of
the Transversality condition

"
Iy T, \ =0, T
e, + 5 . (77)
whefe :
.r:g-pqé ?‘L+GC'E\ -'E*),, (78)
e being a constant Lagrange multiplier, From (77),(78), (69) follows
_ n(x) =a E(x)/,\'E(x)\ ’ (79)
which, in view (75), (77) yields B
o) = “E(x)z'l(x)/ ‘E(x)z“‘l(x)‘ . (80)

Although B(X) sppearing in (80) is not immediately available, it is
possible to calculate an approximation by extrapolating y(X) to “zero-
mesh", An iterative process may then be set up between (80) and (73),
which may converge to yield the value of u(0)., Finally, h(0) may be
determined from the end-conditions, with the aid of

x

2 = 20 2E)Y (&) L&) i€ ()
0

16



and of (73), as

, /\K (51\’) (A} . l‘.m (8)
n(0) = 4 2(X)E(X) j o) i) g . ‘ ?
/g |HomE) ¥ (&) prik
Obviously, if n=1
X
Jafysz=e:@(=- j‘ fydﬁ),'u(0}=l (83)
0

so that (81), (62), and (73%3) reduce to (5) (23) and (11), respectively.
NUMFRICAL EXAMPLE

Required the mmerical solutiom of ¥! = 2y -g* s E(O) = 1 by the method
of Runge-Kutta, with a precision of E¥ = 1 at X = 10 Since the formal
solution is known to be y = &5, it is pos=sible to write down the theorstical
optimum mesh. Here ¥ (x) = c(x)e " ,¥(0) = ¢(0) From Tahle 1,

f = 2 so that from (11), (12), (36), (37) there followss

¥
H= e"x/k s 8% = e“zx'g m= [x/i: log 2],
1

s* T
h (0) = 8l
#(0) e(0) 2 (1-27%) (127 (8)

b =pry (B le2) G-z,

and from (25) ' 1
—-———-—ms% ‘ !k_:i (85
c(0) (1-277) )
T=XM4 .

In our example k = 5: hence W = 3 from (62); c¢(x) = 0,073 = ¢(0) from
formula (13) of reference 3), The numerical values now hecome:
n(z) = [x/3.07], (86)
h,(0) = 0,0093 ,
t, = 651 steps,
T = 0,0106 ,
T 981 steps,

giving the optimum mesh a relative gain of 3T,

17



Of course, in numerical work the sclution y(x) is not knom a -
priori. The optimum mesh can be constructed by a computing machine,
using a rough integration of the differential equation y' = f£{x,y)
with an arbitrary initia¥ h(0), combined with the following algorithme

x .

Anm = l:( I .fy(é)dé‘i- log n /n (0) )/k log 2]9

O .
Ne tp= (Al - ay®aaykedy,

m(xi'l'l) = m(xi) +Am3

(87
h = h(0) 2", )

T TK* h(xi)'e

Here ¥) is an estimate of the loeal truncafion er?o s which ﬁ caleulated
by means of extrapolation to "sero mesh®9), A yll andAy( are the .
increments of y due tostep h and a succession of two half-steps, h/2,
. (B7.1) i3 a consequence of (36) and (11)s The constmt h(0) satisfying
the condition E(x) = B¥ can be found by some suitable Error Control
procedurelQ), ‘ : ' :

CONCIUSIONS

We have shown that an optimum mesh exists and have described the
process whereby it could be constructed. Generally, the saving of time
depends on the differential equation to be integrated, the method used,
and the range of integration. As would be expected, the saving increases
“with the range, If the latter is sufficiently great, the gain will
exceed the cost of additional labor necessary for the construction of the
optimum mesh, and will fully justify its use,

BORIS GARFINKEL
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